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1. Introduction 

The fovea and macular region of the visual system are primarily responsible for the human ability 
to appreciate spatial detail (visual acuity), discriminate color, stereopsis, and other fine discrimina-
tions, and for complex tasks such as reading and face recognition (1 through 4).  In the peripheral 
visual field, the primary visual functions that are performed involve stimulus detection, flicker and 
motion sensitivity, and visuo-vestibular interactions (5 through 10).  Evaluation of different visual 
functions in the peripheral visual field indicates that some tasks such as color discrimination and 
visual acuity are substantially degraded in comparison to the fovea, while others such as stimulus 
detection, motion and flicker detection are only modestly diminished (6 through 8).  Peripheral 
visual functions such as stimulus detection, flicker sensitivity, and motion detection are important 
for noticing targets, localizing and orienting objects, directing eye movements toward stimuli for 
more detailed foveal inspection, and enhancing one’s awareness of the environment.  For tasks that 
involve the surveillance, detection, and identification of objects, as well as navigation during poor 
visual conditions, the ability to detect movement is critical, particularly for the far peripheral field 
of view.  In addition, motion detection in the periphery (motion perimetry) has been found to be a 
valuable clinical ophthalmic tool for early detection and differential diagnosis of ocular and 
neurologic disorders (11 through 17).  

Detection of motion has been a subject of investigation for many years and has been measured in 
terms of displacement (spatial change) thresholds (12, 14, 18 through 30), velocity or rate thres-
holds (31 through 37), motion coherence thresholds (15 through 17), and contrast thresholds (38).  
Each of these procedures is able to reveal different features of peripheral visual function; these 
procedures are affected by a number of stimulus parameters.  In general, motion detection has been 
reported to be a robust attribute of peripheral visual function, (15, 23), revealing fairly consistent 
threshold responses for a variety of different conditions.  Evaluations of the far peripheral visual 
field have been reported by a number of investigators (21, 38, 39).  However, most of this research 
has been conducted more than 20 years ago with limited field of view (FOV) because of the use of 
cathode ray tube (CRT) displays and computer monitors used for generating displays.  The 
evolution and refinement of large screens and immersive environments now allow investigators to 
generate high resolution targets with specific color, motion, and spatial frequency attributes.  
Further, large screens eliminate the restricted FOV and limited testing distances imposed by 
smaller conventional CRTs.  Moreover, threshold estimation procedures have been modified in 
recent years to allow accurate and efficient acquisition of measures through the use of Bayesian 
statistical procedures (40 through 44).  These events have led to their joint application to the 
investigation of motion detection in the far peripheral visual field.  In addition, a recent 
investigation has reported that the neural basis for motion processing in the far temporal visual 
field is different from other portions of the peripheral visual field, so psychophysical examination 
of this topic may yield new insights into the anatomical and physiological basis for these 
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differences (39).  Motion detection has been reported to be an important factor in the performance 
of real-world tasks (45, 46) and in differential diagnosis of ocular and neurologic disorders (11, 12, 
14 through 17, 47).  The purpose of the present investigation is to determine the feasibility of 
measuring motion detection for the far peripheral visual field, to evaluate the ability of Bayesian 
threshold estimation procedures to determine motion thresholds, and to derive a vision test 
methodology that could be applied to real-world task performance activities.  To our knowledge, 
far peripheral motion detection has not been explored via the new wide-screen technology and 
Bayesian estimating or forecasting strategies.  Most clinical procedures use measures of the near 
periphery (within the central 30 degrees) where a significant portion of ocular pathology is 
exhibited.  However, this study explores the far retinal periphery where target detection and 
surveillance are most crucial.  In summary, our investigation of motion detection in the far 
peripheral visual field was directed toward three objectives:  (1) to examine the feasibility of 
measuring motion detection thresholds in the far temporal visual field beyond 50 degrees’ 
eccentricity, (2) to determine the ability of Bayesian test strategies to measure motion thresholds 
for the far peripheral visual field, and (3) to develop a methodology that would permit motion 
threshold determinations that could be directly applied to “real-world” task performance activities.  

 

2. Methods 

2.1 Subjects 

Two male subjects (33 and 61 years of age) with normal visual function served as observers for 
this investigation.  Both are vision scientists and experienced observers.  Each of subjects was 
given an opportunity to practice to become familiar with the experimental arrangement and testing 
paradigm and to become familiar with the psychophysical procedure. 

2.2 Apparatus and Procedures 

The stimulus display consisted of a rear projection system manufactured by Fakespace Systems1 
(Marshalltown, Iowa), which included a Christie Digital2 6000 lumen projector (Cypress, 
California) and three 10-foot-high by 12.5-foot-wide screens positioned in a “U” configuration, 
with the observer situated near the center of the display area (6.25 feet from both side screens and 
11.25 feet from the front screen).  The display resolution (for each screen) was 1600 x 1200 
pixels, with each pixel subtending 4.3 minutes of arc at the nearest viewing area.  Figure 1 shows 
the stimulus display system.  The fixation target (depicted larger in the photograph than actually 
presented) was centered on the middle screen at eye level of a seated subject, and moving stimuli 
were projected onto the right screen.  All three screens presented a uniform background 

                                                 
1Fakespace Systems is a registered trademark of Fakespace Systems, Inc. 
2Christie Digital is a  registered trademark of Christie Digital Systems, Inc. 
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luminance of 17 candelas per square meter (cd/m2).  The fixation target was a circular ring with 
variable gap locations and a thickness and diameter that correspond to approximately a 20/80 
visual acuity.  Sixteen combinations of four gaps in the ring (the gaps were up, down, right, and 
left) were presented at 0.5-second intervals.  The subject was given a two-button mouse that 
served as his response interface for the two tasks.  Initially, the two mouse buttons are pressed to 
synchronize the two computers controlling the targets on the front and right side screen.  After 5 
seconds, the fixation target was presented.  The subject pressed the left mouse button when two 
horizontal slots or four slots appeared in the ring.  The correct responses were recorded as part of 
the divided attention task.  The fixation target was 4.3 times greater than the size of a 20/20 visual 
acuity letter in order to present supra-threshold, yet attention-demanding, targets.  The moving 
targets were projected onto the right screen and consisted of a single black dot (12.9 cd/m2) in one 
of three positions:  53.4, 72.6, and 90 degrees in the temporal visual field of the right eye, with the 
diameter of the dot subtending an angle of 5 degrees at the subject testing distance.  One com-
puter was used for each screen (front and right only) to generate and present targets via page-flip 
animation.  Each computer used a 1-millisecond (ms) resolution timer, and these timers were 
synchronized with a simultaneous key board button press.  The computers recorded all 
presentation events for both screens and translated those data into Excel3 format. 

 

Figure 1.  The stimulus display system. 

We initiated stimulus trials by having the observer depress a mouse button.  To maintain steady 
fixation on the central stimulus, the observer was required to discriminate two particular patterns of 
the 16 possible combinations of the four gaps in the fixation ring (up, down, left, and right).  After 

                                                 
3Excel is a trademark of Microsoft Corporation. 
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each 500-ms presentation, the subject was given 1 second to respond, and all subject responses 
were recorded.  If no response, no data were recorded.  The recorded response times were 
compared with correct responses as an indication of the subjects’ attentiveness to the fixation task.  
Two of 16 patterns were selected to increase the task difficulty.  Two gap options were chosen, one 
where the slots were in opposition to make the target look like a horizontal flat-bladed screw; the 
other choice was all four gaps making the target look like a Phillips screw.  The horizontal and 
Phillips patterns were presented at random, with an expectation of occurrence of approximately 
once every 4 seconds.  The fixation target presentation provided a divided attention (central versus 
peripheral) component to the test procedure.  Divided attention is a common occurrence for many 
real-world tasks required by the Soldier, such as surveillance, target detection and identification, 
visual search, and related activities.  During each motion stimulus trial, only one of the three 
peripheral black dots was presented and once presented, remained stationary for 1 second and then 
was displaced by a variable distance toward the center of the display.  The dot remained stationary 
again for 1 second before disappearing and the next black dot was presented.  The travel distance 
of the dots was transformed to angular motion at the eye.  This transformation compensated for the 
configuration of the display screens (departure from a hemispherical surface) where targets move 
between points on a path parallel to the line of sight.  A non-hemispheric screen may influence 
target motion perception over a limited number of pixels.  The target size, shape, and illumination 
may be influenced throughout the interval; however, the motion detection data derived in this pilot 
study were appropriate to address our hypothesis.  The shape and size of peripheral targets is quite 
variable and is affected by many factors, but the perceived size of targets in the periphery would 
not affect the outcome of this study (48).  Future studies will incorporate a software algorithm to 
compensate for non-hemispheric screen factors. 

Motion thresholds that exceeded the 1-second detection interval were determined by means of a 
Bayesian forecasting strategy referred to as the “Best PEST” (Parameter Estimation by Sequential 
Testing) (40, 49), which predicted the angular displacement needed to detect stimulus motion.  
Simultaneously with the presentation of the central fixation target, a moving target was presented 
on the right screen in the subject’s extreme temporal visual field (the left visual field was not tested 
in this pilot study).  The subject was asked to respond by pressing the right mouse button when he 
sensed movement of the peripheral target during the 1-second detection interval or within 1 second 
thereafter.  These timed responses and presentations were recorded by a Delphi4 compiled program 
and stored into an Excel spreadsheet file that permitted future data analysis and plotting.  Three 
simultaneous PEST procedures, one for each of the peripheral dot locations and two stationary 
catch trials (to identify false positive responses), were run in random order.  We established the 
initial starting point of the PEST by estimating the range of motion detection in previous test trials.  
Next, the logistic equation with standard deviation equal to one-fifth the range was assumed for the 
psychometric function.  Likelihood functions for a “yes” and a “no” response to a test at a given 
threshold were derived from these data.  The threshold measured was motion detection, not motion 
                                                 

4Delphi is a trademark of Borland Software Corporation. 
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direction, thereby allowing the use of a yes/no rather than forced choice procedure.  We obtained a 
starting probability density function (p.d.f.) by assuming a yes response at maximum stimulus and 
a no response at the minimum stimulus.  The choice of the mode or peak of the p.d.f. was then 
used to test the subject.  Depending on the subject’s response, the p.d.f. was revised by the 
appropriate likelihood function by means of Bayse’s conditional probability theorem, namely, the 
subject had a given range of probabilities and responded in a particular way.  After ten repetitions, 
the p.d.f. was narrowed to a sufficient extent that the 90% confidence interval could be verified to 
see if it met a pre-determined value.  Also, this function could be converted to a cumulative 
distribution over possible thresholds to give the most recent revision of the psychometric function. 

The 90-degree psychometric function estimate chosen in this pilot study was determined from 
research data that quantified thresholds from less eccentric retinal positions.  The threshold 
approximation data used in the pilot study did not translate as expected and the resultant range 
chosen was not large enough to prevent a plateau of the data for the 90-degree target location.  The 
historical retinal threshold data could not be used to accurately predict the psychometric function; 
it should have allowed for more than the 30-pixel total target movement used in this pilot study.  
The subjects reached the maximum displacement without going higher because of the limited 
motion threshold range selected.  This pilot study, however, fortunately provided the data for a 
more appropriate 90-degree psychometric function estimate and motion threshold range for future 
research studies.  The number and type of subject in this study were limited by its classification as 
a “pilot study” to determine proof of concept.   

 

3. Results  

Figure 2 presents psychometric functions for motion thresholds (angular displacement in degrees 
during the 1-second target motion interval) obtained at 53.4, 72.6, and 90 degrees in the temporal 
visual field of the first observer.  The psychometric functions indicate that larger stimulus excur-
sions were needed to detect motion at greater eccentricities, and the slope of the psychometric 
function became shallower, which suggests larger variability at higher stimulus eccentricities.  
Threshold was defined as the movement corresponding to the 50% probability of detection level.  
In accordance with previous investigations (30), motion thresholds increased at greater stimulus 
eccentricities, resulting in motion thresholds of approximately 0.55 deg/sec at 53.4 degrees’ eccen-
tricity, 1.15 deg/sec at 72.6 degrees’ eccentricity, and 2.15 deg/sec at 90 degrees’ eccentricity.  
Figure 3 represents the stimulus movement presented during the threshold estimation trials at each 
of the peripheral eccentricities.  Individual symbols indicate individual probability of detection 
values for various stimulus movements, and the solid and dotted lines indicate the best psycho-
metric fit to the data.  Stable threshold levels are achieved in fewer than 10 trials, indicating that 
the test procedure is both accurate and efficient. 
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Figure 2. Psychometric functions for angular movement sensitivity (velocity in degrees per 

second) obtained at 53.4, 72.6, and 90 degrees in the temporal visual field (right eye) 
for subject 1in this experiment.  (Motion threshold data were obtained with a PEST 
[Bayesian] threshold estimation procedure.) 
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Figure 3. Raw data for individual PEST trials determined at 53.4, 72.6, and 90 degrees in the 

temporal visual field (right eye) for subject 1 in this experiment.  (After each 
presentation, the PEST procedure refines the estimate of threshold angular velocities at 
each eccentricity until the final value [within a 90% confidence interval] is obtained.) 
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Figure 4 presents the psychometric functions for a second observer.  The motion threshold at  
53.4 degrees is approximately 0.45 deg/sec, which is slightly lower than that obtained for the first 
observer.  The motion threshold at 72.6 degrees is 1.55 deg/sec, which is modestly higher than for 
the first observer, and the 90-degree threshold is approximately 2.15 deg/sec, which is similar to 
that obtained for the first observer.  These modest motion threshold differences may be within the 
range of normal subject variability for sensitivity values of the extreme retinal periphery.  The 
stimulus excursions for each stimulus trial (figure 5) again demonstrate that stable threshold 
estimates are obtained in a relatively short amount of time.  Overall, the results for both observers 
are similar and reveal only modest increases in threshold estimations for greater eccentricities. 
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Figure 4. Psychometric functions for angular movement sensitivity (velocity in degrees per second) 

obtained at 53.4, 72.6, and 90 degrees in the temporal visual field of the right eye for subject 2 
in this experiment.  (Motion threshold data were obtained with a PEST threshold estimation 
procedure.) 

Additional raw data are available in appendix A and demonstrate the consistency of each subject’s 
tracking performance in subsequent trials. 
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Figure 5. Raw data for individual PEST trials determined at 53.4, 72.6, and 90 degrees in the temporal 

visual field (right eye) for subject 2 in this experiment.  (After each presentation, the PEST 
procedure refines the estimate of threshold angular velocities at each eccentricity until the final 
value [within a 90% confidence interval] is obtained.) 

 

4. Discussion 

The results obtained from this investigation provide strong evidence to support each of the three 
pilot study goals:  First, it is clear that motion detection thresholds for the far peripheral visual  
field can be obtained with current computer and video technology.  The stimulus characteristics 
employed for this study involve the use of a rather sophisticated display system that must coordinate 
and synchronize displays on three large projection screens, yet permit accurate and precise control 
of the dynamic stimuli that are displayed.  The motion detection thresholds that were obtained for 
this investigation are similar to those that have been reported in previous studies with considerably 
different equipment (12, 30). 

Secondly, the use of a Bayesian forecasting test strategy instead of a method of adjustment, method 
of limits, or “staircase” procedure appears to be feasible for evaluating the far peripheral visual 
field as well.  We are unaware of any previous studies that have applied such a threshold estima-
tion methodology for determining performance characteristics in the far periphery.  Our findings 
indicate that it is possible to apply Bayesian strategies in an accurate and efficient manner to obtain 
far peripheral motion thresholds and to take advantage of many other beneficial aspects (higher 
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reproducibility and reliability, etc.) of these techniques for examining the far peripheral visual 
field.  Our findings indicate that it should be possible to obtain reliable thresholds within 10 
stimulus presentations, and further refinement of these procedures could enhance the accuracy  
and efficiency of these procedures. 

Finally, these results indicate that it is possible to evaluate the importance of motion sensitivity as  
a component of task performance in many real-world situations.  With this display system, it is 
possible to measure motion sensitivity and compare it to task performance for visual search, object 
detection and identification, and related tasks that can be implemented via the same display system.  
Alternatively, a multitasking situation (common for many real-world tasks) could be initiated on 
the display system, where motion detection is but one of several tasks to perform.  In addition, the 
introduction of a dynamic self-motion component could be added to the test regimen by the intro-
duction of a two-dimensional treadmill to simulate real-world mobility tasks.  In this type of 
system, it is possible to initiate a myriad of simulation conditions to examine the importance of 
viewing during degraded visibility (darkness, fog, low contrast, blur), multitasking and attentional 
issues, and visuomotor coordination.  We are currently in the process of implementing and refining 
such procedures for future research efforts. 

The recent literature reports of different anatomical and physiological processing of visual infor-
mation for the far temporal visual field also introduces a number of interesting questions (39).  Are 
there differences in the salience of various stimulus parameters for this portion of the visual field?  
What purposes do these altered processing methods serve the individual in terms of interaction 
with the environment?  What is the importance of this region for locomotion and other mobility 
tasks (45, 46)?  Our findings indicate that it is possible to obtain motion detection (displacement) 
thresholds in the far peripheral visual field with the use of Bayesian threshold estimation proce-
dures.  With the experimental paradigm outlined in this investigation, we believe that insights into 
many of these issues can be successfully achieved. 
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Appendix A.  Additional Raw Data for Subjects 1 and 2 

These data are included for completeness.  
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